
Snowtrail: Testing with ProductionQueries on a Cloud Database

Jiaqi Yan†, Qiuye Jin†, Shrainik Jain∗, Stratis D. Viglas‡, Allison Lee†

†Snowflake Computing, ∗University of Washington, ‡Google

ABSTRACT
Database as a service provided on cloud computing platforms has
been rapidly gaining popularity in recent years. The Snowflake Elas-
tic Data Warehouse (henceforth referred to as Snowflake) is a cloud
database service provided by Snowflake Computing. The cloud na-
tive capabilities of new database services such as Snowflake bring
exciting new opportunities for database testing. First, Snowflake
maintains extensive knowledge of historical customer queries, in-
cluding both the query text and corresponding system configu-
rations. Second, Snowflake is multi-tenant, which provides easy
access to metadata and data that can be used to rerun customer
queries from a privileged role. Furthermore, the elastic nature
of Snowflake’s data warehouse service allows testing with these
queries using a separate set of resources without impacting the
customer’s production workload.

This paper presents Snowtrail, an infrastructure developedwithin
Snowflake for testing using customer production queries with re-
sult obfuscation. Running tests with production queries provides
us with direct insight into the impact of improvements and new
features on customer workloads. It enables testing on queries of
more shapes and complexity than can be manually constructed by
developers. Snowtrail is also used to help ensure the stability of the
online upgrade process of the system.

CCS CONCEPTS
• Information systems→ Database utilities and tools; • Soft-
ware and its engineering→ Software verification and validation;

KEYWORDS
Database-as-a-service, Testing, Workload Selection, Automation,
Snowtrail, Snowflake

ACM Reference Format:
Jiaqi Yan†, Qiuye Jin†, Shrainik Jain∗, Stratis D. Viglas‡, Allison Lee†. 2018.
Snowtrail: Testingwith ProductionQueries on a CloudDatabase. InDBTest’18:
Workshop on Testing Database Systems , June 15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3209950.3209958

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DBTest’18, June 15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5826-2/18/06. . . $15.00
https://doi.org/10.1145/3209950.3209958

1 INTRODUCTION
1.1 The Snowflake Data Warehouse
Snowflake [1] is a multi-tenant cloud data warehouse offering a
highly available, scalable and elastic database as a service. Snowflake
has a multi-cluster, shared-data architecture and adopts a service-
oriented design with three distinct layers where each layer is in-
dependently scalable: (a) the data storage layer, which utilizes the
storage services provided by cloud computing platforms (e.g. AWS
S3); (b) the virtual warehouses, which are abstractions of machine
clusters that handle query execution; and (c) the cloud services
layer, which consists of a collection of services for query compila-
tion and optimization, transactions, security, virtual warehouses
and other management tasks.

Snowflake supports ACID transactions via Snapshot Isolation
on top of multi-version concurrency control (MVCC), and provides
time travel functionality where queries can be executed as of a
certain timestamp in the past as long as the relevant data is within
the retention period.

1.2 Motivation
Snowflake’s service-oriented design provides many new opportuni-
ties for testing. One of the key advantages to delivering a database
as a service is the wealth of data available that can provide us with
many insights into the system. This includes the history of all cus-
tomer issued queries along with their configurations and related
statistics. This historical data is stored in the Snowflake data ware-
house, and we have made use of this data to build an array of tools
that enable workload analysis tasks. The multi-tenant architecture
of Snowflake also facilitates easy and secure access to metadata and
data used in customer queries from a privileged role. The separa-
tion of compute and storage layers in Snowflake further enables
running customer queries without impacting customer workloads.

We have created Snowtrail to take advantage of these capabil-
ities to run customer queries to test Snowflake itself. To ensure
security, the results of all queries run by Snowtrail are obfuscated.
Whereas to avoid interference with customer workloads, Snowtrail
reruns customer queries on isolated cloud services using separate,
dedicated virtual warehouses. Testing with customer production
queries gives us exact knowledge of the impact of a feature on the
customer queries which allows us to gather feedback and make
improvements before rolling it out to our customers.

There are various challenges to testing a fast-moving cloud data-
base service. Snowflake runs tens of millions of customer queries
per day and has an online upgrade process to ensure continuous
availability. Therefore, Snowflake has adopted a weekly release
cycle that enables fast feature delivery [1]. The quick turnaround
time for each release means there is a relatively short time window
available for testing on the release artifacts. For fast release cycles,

https://doi.org/10.1145/3209950.3209958
https://doi.org/10.1145/3209950.3209958

DBTest’18, June 15, 2018, Houston, TX, USA J. Yan et al.

Workload

Developer

Developer

Run Settings

Import Workload

Baseline Run

ExecutionCompilation

Target Run

Workload

Snowflake Database

Verification Report

Customized Analysis

Configuration

Workload
Repository

Query
Statistics

Obfuscated
Results

Snowtrail
Data

Configured
 Cloud

Services

Dedicated
Virtual

Warehouse

Figure 1: Feature testing workflow using Snowtrail

testing using customer queries on the new release before migrating
actual customer workloads provides assurance of the stability and
success of the release. Given the scale of customer queries submit-
ted to Snowflake, however, it is prohibitively expensive to rerun all
of them within a short time window. Therefore, an essential part of
Snowtrail is workload sampling and selection to ensure that testing
consumes a reasonable amount of time and resources.

1.3 Related Work
Oracle’s SQL Performance Analyzer [8] is a feature from Oracle for
testing impacts of planned changes such as upgrades, parameter
changes, schema changes, etc. by executing queries under differ-
ent settings. Snowtrail adopts a similar idea for running customer
queries under different settings for and compare the runs. Ora-
cle Database Replay [3] is another tool that can replay captured
workloads to replicate the impact of the workload on the system.
Snowtrail also provides a replaymode similar to Oracle Database Re-
play. A key difference of Snowtrail is that customers do not need to
run these tests themselves; the tests are run by Snowflake internally
without impacting customer production workloads. For release and
feature testing, Snowtrail typically covers many customers within
the same workload.

Microsoft’s SCOPEPlayback [7] can replay the compilation and
optimization phase of SCOPE jobs. Snowtrail’s idea of of utilizing
the job history for testing and validation is similar. Besides support-
ing an “explain” mode, Snowtrail focuses on executing customer
queries, and is implemented as a generalized workload runner that
supports many different ways to configure and replay workloads.

We also argue that workload selection is necessary to achieve
efficient resource utilization for testing with production queries,
and Snowtrail provides functionality to select and build workloads
customized to the purpose of the test. Snowtrail provides verifica-
tion and reports of finished runs, as well as a streaming mode that
supports running queries that satisfy the testing criteria over an
extended period of time.

The rest of the paper is organized as follows. Section 2 describes
the design and implementation details of Snowtrail. Section 3 de-
scribes the usage of Snowtrail in production and presents some
experimental results. In Section 4 we discuss some of the lessons
learned from running Snowtrail in production and future work. We
present some concluding remarks in Section 5.

2 DESIGN AND IMPLEMENTATION
Snowtrail is designed as a versatile workload runner with a focus
on providing a tool for running production queries and detecting
regressions. Snowtrail organizes queries into workloads that can
be run under different settings and later be compared to analyze
the differences in these runs. Snowtrail has three main function-
ality: workload selection, workload running, and result analysis.
The workload selector creates the appropriate workload from the
repository of historical customer queries for the purpose of the
current test. The workload runner runs the selected workload with
specified settings. Finally, the result analyzer takes in the results
of multiple runs and compares them to report on differences or
regressions. All useful data generated by Snowtrail is stored back
in the Snowflake database.

Snowtrail: Testing with ProductionQueries on a Cloud Database DBTest’18, June 15, 2018, Houston, TX, USA

2.1 Workflow
Figure 1 depicts a typical workflow of using Snowtrail for feature
testing. The developer starts with building a workload of queries
to run by either specifying the workload selection configuration
or directly importing a workload to run. The workload selection
configuration contains criteria for selecting queries best suited for
testing the target feature. Snowtrail will then automatically build a
workload from the given configuration.

After the workload has been built, the developer needs to specify
the settings to use for running the workload. At least two sets of
settings are needed, one for a baseline run and one for a target run.
For feature testing, the two settings would be the same except for
the feature flag. Snowtrail runs are decoupled from workloads so
the same workload can be run any number of times with different
settings. The developer then kicks off the baseline and target runs on
dedicated virtual warehouses to ensure resource isolation. Once the
runs are finished, Snowtrail performs verification of the results to
eliminate false positives before generating a report for regressions.
False positives mostly occur in performance comparisons, and can
be caused by variations in the cloud environment.

All relevant data including query history, query statistics, obfus-
cated results, and metadata of the runs are stored in the Snowflake
database and available to be queried using SQL. Developers can
either drill down to investigate specific queries from the report, or
choose to perform deeper analysis using customized SQL queries
depending on the goal of the test.

2.2 Snowtrail Workloads
Snowtrail provides the functionality to automatically select a work-
load based on a set of criteria provided by the developer given the
number of queries (sample size) in the workload. Snowtrail supports
a wide variety of selection criteria including accounts and users
that issued the queries, database and schema of the queries, the
time window the original queries were run, matching query text
fragments, matching execution configurations, and many others.

After deduplicating the queries that satisfy the developer-supplied
criteria, Snowtrail applies a set of heuristics that further prunes
the search space. Typically, a sizable percentage of queries in the
system are very simple queries or ones that do not present much
testing value. For example, "select 1" queries are constantly issued
by some BI tools to verify they have a valid connection to the
database. Also, queries selected for testing should only consume a
reasonable amount of resources. Therefore, queries that are either
too simple or too expensive are not considered.

For the remaining candidate queries, Snowtrail tries to select
the subset that can achieve the maximum coverage according to
a diversity measurement. Most production schemas tend to have
fixed usage patterns, and it should be enough to pick a small number
of representative queries for each query pattern.

We use Query2Vec [4] based workload summarization for se-
lecting a diverse workload sample. Query2Vec is an algorithm that
maps SQL queries to a high dimensional vector space. Thus, queries
can be embedded into a high-dimensional vector space in a manner
that preserves its semantics, such that cosine distance between the
vectors performs as well as application-specific distance functions
over applications-specific feature vectors. Next, to summarize a

workload, we embed all queries in the workload using Query2Vec
and then use K-means to find K query clusters and then pick the
closest query to the centroid in each cluster as a representative
query for that cluster in the summary. To determine the optimal
K we use the Elbow method [5] which runs the K-means algo-
rithm in a loop with increasing K until the rate of change of the
sum of squared distances from centroids ‘elbows’ or plateaus out.
This method ensures that the subsample thus created contains at
least one query from all query clusters, where each query cluster
represents a specific type of customer query.

Selected workloads are persisted in Snowflake along with some
associated contexts, such as the compilation environments and the
start time of the original query which will be useful for rerunning
the queries. For previously selected workloads, Snowtrail also en-
ables refreshing the workload to pick up the latest set of customer
queries that satisfy the selection criteria.

Snowtrail Workloads can also be imported directly from query
texts or other structured formats like CSV or JSON. This is typically
used when the workload is fixed and the developer has an exact
knowledge of which queries to run. Therefore, Snowtrail workloads
could consist of not only production queries, but any query the
developer wishes to test on a production environment.

2.3 Snowtrail Runs
Snowtrail employs several mechanisms to enable running customer
queries in a secure, reliable and configurable way. These mecha-
nisms include but are not limited to:

• Result Obfuscation. Data security is of the utmost impor-
tance for Snowflake, so we take great measures to make sure
that rerunning customer queries does not reveal customer
data. During Snowtrail’s compilation phase, hash aggrega-
tion operators are added to the top of the query plan. This
reduces the results of obfuscated queries to one single hash
value, and guarantees that developers using Snowtrail will
not be able to see the results returned by the customer query.
Snowtrail uses a proprietary hash function to compute stable
hash aggregations, which ensures the results are comparable
across different runs of the same query.

• Query Redirection. It is a common requirement, especially
for release testing, that Snowtrail needs to compare two
versions of cloud services and virtual warehouses. Therefore,
a query redirection mechanism was implemented to redirect
queries to run on a specified cloud services instances or
clusters with the targeted test version.

• Configurable query compilation environment. Forwork-
loads imported as query text, a compilation environment
(e.g. account, database and schema) needs to be specified to
successfully run the workload. Other environment settings
such as feature flags can also be configured.

• Time Travel. Customers may be running DMLs concur-
rently with a Snowtrail run, therefore the data for the un-
derlying tables could change between runs. Since Snowflake
provides time travel functionality, Snowtrail runs can be
configured with a time-travel timestamp where all queries
in the workload will be run as of the specified timestamp.

DBTest’18, June 15, 2018, Houston, TX, USA J. Yan et al.

Developer
Run
Setting

Workload
Selector

Query
Queue

Streaming
Speed

Poll
Results

Workload
Configuration

Report

Query Runner

Dequeued
Query

Incremental
Selection

Verification&
Comparison

Baseline Run

Target Run

Figure 2: Workflow for Snowtrail Streaming Runs

Query results of two runs are only comparable when they
have the same time-travel version.

Snowtrail runs aim to test customer queries without impacting
the customer’s production workload. Therefore, runs use a separate
set of cloud services instances and dedicated virtual warehouses,
which can be configured by the developer.

Depending on the resources available (e.g. the size of the virtual
warehouse used), developers can specify the concurrency to use
to run the workload. High concurrency runs can also be used as a
good stress testing mechanism for the virtual warehouse. Snowtrail
also has a timeout limit option that puts a cap on the maximum
time a query can run before it is canceled to avoid rogue queries
from taking up too many resources.

Since Snowtrail workloads maintain the original start times of
captured queries, it also provides a “replay” mode to run workloads.
The replay mode runs queries with the same time intervals apart as
their original start times. This is particularly useful for simulating
the exact impact of a captured customer workload on the system.
Finally, Snowtrail also provides an “explain” mode, which only
compiles queries in the workload for detecting plan changes and
compilation errors.

2.4 Verification and Analysis
After a workload generates multiple runs under different settings,
Snowtrail performs verification and analysis on the results. We
have found that additional verification steps are necessary before
performing the analysis, especially for performance comparisons,
in order to reduce false positive rates.

When comparing the baseline and target runs, Snowtrail ver-
ifies performance regressions in the target run by rerunning the
queries reported as slower than the same queries in the baseline
run multiple times using the target run settings. This has been very
effective in weeding out the false positives in performance compar-
isons due to variations in the cloud environment or different cache
states for either the data in virtual warehouses or the metadata
in the cloud services layer. Only after a query consistently shows
a significant percentage of performance regression after several
verification runs does Snowtrail report it as an actual performance
issue. The verification process also looks for queries containing
objects with different versions of schema definitions and remove
them from the comparison.

Besides performance regressions, Snowtrail also detects wrong
results as well as new user errors or internal errors, and automat-
ically generates a report. The report takes extra care to ensure
the comparisons are always valid. For example, non-deterministic
queries are excluded from performance and result comparisons;
queries that reached the time-out limit set by the runs are not com-
pared for performance differences; and queries that fail with the
same error code in both runs are not reported as regressions.

Overall, the Snowtrail report tries to be concise and easy to
digest. Since all metadata of the workloads and runs are stored in
Snowflake, including detailed statistics for each query, sophisticated
developers can easily write their own analytical queries to perform
more detailed analysis suited to their own testing requirements.
We have found it is much more flexible and useful to expose the
data in relational schemas through a SQL interface as opposed to
baking more functionality into the report itself.

2.5 Streaming Mode
Snowtrail’s default model is batch-oriented, where a workload is
selected up front, then run under different settings for comparison.
This works well enough for small to medium sized workloads, but
for larger workloads, this poses the following problems:

• Larger workloads usually take longer to run. Over time,
many of the original queries will no longer be valid due to
schema changes, e.g. dropped tables.

• Even in the absence of schema changes, many customers
are constantly ingesting new data into existing tables. To
enable results comparisons, Snowtrail uses a fixed time travel
version for each run, which is typically set at the beginning
of the run. For long runs, we may end up beyond the time
travel retention time.

• Since the workloads are fixed up front, we are missing op-
portunities to select the latest set of queries that satisfy the
search criteria.

To address these problems, Snowtrail provides a streaming mode
for running queries. The goal of the streaming mode is to rerun
queries relatively soon after they were originally run by the cus-
tomer, and hence improve the query success rate and more closely
match the customer’s use case. Figure 2 shows the workflow for
running Snowtrail under streaming mode. The developer needs to
provide a workload configuration and run settings similar to the

Snowtrail: Testing with ProductionQueries on a Cloud Database DBTest’18, June 15, 2018, Houston, TX, USA

ones provided in the batch mode. However, instead of selecting all
queries in the workload up front, the developer now controls the
streaming speed which specifies how many queries to select for
each unit time period.

In streaming mode, workloads are selected incrementally in
micro-batches and added to a query queue which then submits
them to the query runner. The query runner takes in each query
and multiplexes it to run with different settings before performing
verification and comparison. The results of the streaming runs are
periodically flushed to the Snowflake database so that developers
can poll the latest results ongoing streaming runs.

Since the queries are submitted to the query runner individually,
they can be run using different time travel versions. In streaming
mode, each query simply uses the current timestamp they are sub-
mitted to the runner as the time travel version, and there is no
need to travel far back in time. Additionally, since workloads are
selected incrementally, they are guaranteed to only contain very
recent queries. This means there are fewer data changes or schema
changes when running these queries, resulting in fewer invalid
queries. With the streaming mode, Snowtrail is able to support
much longer runs with higher success rates.

3 SNOWTRAIL USAGE
3.1 Release Testing
Snowtrail has been incorporated as part of Snowflake’s weekly
release process. We use Snowtrail’s streaming mode for release
testing to pick up the latest customer queries and run them on both
the current version and the new release version to detect potential
regressions. The Snowtrail run is used to ensure the stability of
the release and is run as the final mandatory sanity check mecha-
nism before migrating customer workloads to the new release. The
workflow has been automated for the release pipeline, and reports
are automatically generated.

It is desirable to minimize the time window between when new
release artifacts are available and when we start migrating cus-
tomers to a new release. In order to achieve this, the release run
uses high concurrency and runs queries on a dedicated multi-cluster
warehouse, [2], which can automatically scale up and down to han-
dle query workloads. This allows us to reduce the runtime to a few
hours, while running a sufficiently large set of queries.

Our workload selection technique ensures that the sample of
chosen queries covers a diverse set of use cases. We demonstrate
this in Figure 3 where each point in the plot represents a query
embedded into a two dimensional space. The sample selected using
Query2Vec based summarization is more spread out and diverse
(it guarantees picking one query sample from each query cluster),
and thus ensures coverage of all types of queries before release.

Figure 4 shows the improvements of using stream runs vs batch
runs. The data is collected for 10 stream runs and 10 batch runs
with 4000 queries in each run. The batch runs are performed im-
mediately after the workloads are selected. The first column shows
skipped queries during runs, which are mostly caused by schema
changes such as dropped objects in the original query. The second
column shows queries with changed data between the time they
were selected and rerun. The last column shows false positives de-
tected by verification. As shown in the figure, stream runs achieve

10 5 0 5

2

1

0

1

2

3

4

Query2vec
random

Figure 3: Comparison of Query2Vec based workload sam-
pling and random sampling. The plot shows queries em-
bedded into a 2D space (using T-SNE [6]). The distance be-
tween queries represents syntactic differences. The sample
of queries selected using Query2Vec summarization picks
queries that cover many different types of queries and are
more spread out, whereas the random sample tends to pick
query types that are more populous (and thus less diverse).

Figure 4: Improvements of stream runs over batch runs. Ver-
tical axis shows the percentage among all selected queries.

much higher success rates and much lower false positive rates, and
are thus much more efficient.

3.2 Feature Testing
Before a major SQL related improvement is released, it is tested on
production queries using Snowtrail to gain insights on the impacts
of the change to customers. To test new features and improvements,
developers set up feature flags and follow the workflow as described
in Section 2.1.

Besides query history, Snowflake also maintains logs of produc-
tion queries and makes them available to query using SQL. This
means we can easily know exactly which queries will potentially
benefit or regress due to a particular change. During feature devel-
opment, a developer can add log lines where the target feature is

DBTest’18, June 15, 2018, Houston, TX, USA J. Yan et al.

expected to have an impact. After this logging code is in produc-
tion for some time, the developer can simply query the production
logs to determine candidate queries for testing the impact of the
feature, and construct workloads out of these queries. We have also
implemented a feature usage tracking mechanism that presents this
information in a more structured form to simplify this process. Our
frequent release schedule enables us to take advantage of the fea-
ture usage and logging information to integrate Snowtrail testing
as part of the development process and make quick iterations.

Another typical workflow is for testing the impact of plan changes
on performance. The developer would issue two runs to first deter-
mine queries with changed plans under the feature. This can also
help us gauge how widespread the impact would be. Afterwards,
the developer would pick only the queries with changed plans and
execute them in order to investigate the performance impact. Today
these processes are still largely done manually by the developer,
but we plan on integrating these patterns into Snowtrail itself.

Our frequent release schedule and Snowtrail’s ability to test in
production also allows us to quickly assess the potential impact of
a feature before we commit to fully implementing and supporting
it. The combination of Snowtrail with a service-oriented model and
short release cycles has really changed how we prioritize projects
and evaluate what is worth doing.

3.3 Workload Player
Besides testing purposes, Snowtrail is also used as aworkload player.
During online upgrades, and before migrating some customers over
to the new version, Snowtrail is used to run workloads that are
representative of the access patterns of customer queries to “warm
up” various caches for target cloud services clusters. The goal of
this exercise is to avoid performance peaks caused by hitting “cold”
caches after the upgrade, especially for customers with strict SLAs
on query response time.

Besides the release process, Snowtrail has also been used to
capture and replay customer workloads in Proof of Concept (POC)
projects, and it has been used to perform high concurrency runs
for stress testing virtual warehouses.

4 LESSONS LEARNED AND FUTUREWORK
Running Snowtrail in production has provided us with some valu-
able lessons and feedback. There are some limitations to the ap-
proach of rerunning customer production queries: schema changes
might render the query invalid; non-deterministic queries cannot
be used for result verification; furthermore, queries that consume a
lot of resources are expensive to rerun. These limitations could lead
to missed testing opportunities, especially for non-deterministic
queries which count toward a fairly large percentage of total queries.

We have also learned that it is not an easy task to find a represen-
tative workload that can achieve good coverage with a relatively
small subset of queries. Query2Vec based summarization provides
significantly better coverage than random sampling, however it
requires a pre-trained model over a large set of queries. Despite
our best efforts, Snowtrail is not always able to detect regressions
before customers are migrated to the new release. Therefore, addi-
tional safety mechanisms, such as automatically rerunning failed
queries on the old version, are still required.

On the other hand, Snowtrail has been more successful in de-
tecting wide-spread issues that would impact lots of queries in
the system. Also, even if a particular query was not covered in
the pre-upgrade test runs, the query obfuscation and redirection
mechanisms implemented for Snowtrail allows us to easily rerun
the query on different release versions to identify regressions. False
positives were another major issue for early versions of Snowtrail,
especially for performance regressions.We have taken various steps
to dramatically lower the false positive rate.

We believe there are still many opportunities for further im-
provements for Snowtrail. For example, we continue to work on
improving automatic workload selection to achieve better coverage,
and plan to extend Snowtrail to cover more types of queries.

5 CONCLUSION
Snowflake’s service-oriented, multi-tenant, elastic architecture of-
fers great opportunities for testing. In this paper, we presented
Snowtrail, an internal tool for testing Snowflake with production
customer queries. Snowtrail provides functionality to performwork-
load selection, workload running, and results verification and anal-
ysis. Snowtrail has been adopted as an integral part of Snowflake’s
release pipeline to prevent regressions during online upgrade. It
has also been used to test the impact of new features on customer
workloads. Snowtrail is also used as a workload player for replay-
ing workloads on the production environment. We believe that
infrastructures like Snowtrail are essential to the development and
testing pipeline of a large production cloud data warehouse.

ACKNOWLEDGMENTS
We would like to thank Max Chebotarev, Thierry Cruanes, Benoit
Dageville, Max Heimel, Neda Nikoo, Shige Takeda, Peter Povinec,
William Waddington, Rodney Weaver and Marcin Zukowski for
their contribution to this project. We would also like to thank all
members of the Snowflake Engineering team for their support.

REFERENCES
[1] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). ACM, New York, NY, USA,
215–226. https://doi.org/10.1145/2882903.2903741

[2] Snowflake Documentation. 2016. Multi-cluster Warehouses. (2016). https:
//docs.snowflake.net/manuals/user-guide/warehouses-multicluster.html

[3] Leonidas Galanis, Supiti Buranawatanachoke, Romain Colle, Benoît Dageville, Karl
Dias, Jonathan Klein, Stratos Papadomanolakis, Leng Leng Tan, Venkateshwaran
Venkataramani, Yujun Wang, et al. 2008. Oracle database replay. In Proceedings
of the 2008 ACM SIGMOD international conference on Management of data. ACM,
1159–1170.

[4] S. Jain, B. Howe, J. Yan, and T. Cruanes. 2018. Query2Vec: An Evaluation of
NLP Techniques for Generalized Workload Analytics. ArXiv e-prints (Jan. 2018).
arXiv:cs.DB/1801.05613

[5] Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining
number of Cluster in K-Means Clustering. International Journal 1, 6 (2013), 90–95.

[6] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[7] Ming-Chuan Wu, Jingren Zhou, Nicolas Bruno, Yu Zhang, and Jon Fowler. 2012.
Scope Playback: Self-validation in the Cloud. In Proceedings of the Fifth Interna-
tional Workshop on Testing Database Systems (DBTest ’12). ACM, New York, NY,
USA, Article 3, 6 pages. https://doi.org/10.1145/2304510.2304514

[8] Khaled Yagoub, Peter Belknap, Benoit Dageville, Karl Dias, Shantanu Joshi, and
Hailing Yu. 2008. Oracle’s SQL Performance Analyzer. (2008).

https://doi.org/10.1145/2882903.2903741
https://docs.snowflake.net/manuals/user-guide/warehouses-multicluster.html
https://docs.snowflake.net/manuals/user-guide/warehouses-multicluster.html
http://arxiv.org/abs/cs.DB/1801.05613
https://doi.org/10.1145/2304510.2304514

	Abstract
	1 Introduction
	1.1 The Snowflake Data Warehouse
	1.2 Motivation
	1.3 Related Work

	2 Design and Implementation
	2.1 Workflow
	2.2 Snowtrail Workloads
	2.3 Snowtrail Runs
	2.4 Verification and Analysis
	2.5 Streaming Mode

	3 Snowtrail Usage
	3.1 Release Testing
	3.2 Feature Testing
	3.3 Workload Player

	4 Lessons Learned and Future Work
	5 Conclusion
	Acknowledgments
	References

