
Data Cleaning in the Wild: Reusable Curation Idioms from
a Multi-Year SQL Workload

Shrainik Jain, Bill Howe
Computer Science and Engineering Department,

University of Washington,
Seattle, WA, USA

{shrainik, billhowe}@cs.washington.edu

ABSTRACT
In this work-in-progress paper, we extract a set of curation idioms
from a five-year corpus of hand-written SQL queries collected from
a Database-as-a-Service platform called SQLShare. The idioms we
discover in the corpus include structural manipulation tasks (e.g.,
vertical and horizontal recomposition), schema manipulation tasks
(e.g., column renaming and reordering), and value manipulation
tasks (e.g., manual type coercion, null standardization, and arith-
metic transformations). These idioms suggest that users find SQL
to be an appropriate language for certain data curation tasks, but we
find that applying these idioms in practice is sufficiently awkward
to motivate a set of new services to help automate cleaning and
curation tasks. We present these idioms, the workload from which
they were derived, and the features they motivate in SQL to help
automate tasks. Looking ahead, we describe a generalized idiom
recommendation service that can automatically apply appropriate
transformations, including cleaning and curation, on data ingest.

1. INTRODUCTION
Data curation is increasingly recognized as the bottleneck to

analytics. Researchers and practitioners report spending a high
proportion of their time cleaning, restructuring, transforming or oth-
erwise preparing data for analysis. Worse, the time and effort spent
on these “janitorial” tasks are difficult to amortize over repeated
analysis projects; requirements tend to vary widely from project to
project.

Classical approaches to data integration are relevant to curation,
but tend to emphasize the design of a mediated schema to subsume
two or more existing schemas. Data warehouse cubes are also
associated with significant up front design and engineering of a cen-
tralized schema and the ETL workloads to fill it. These heavyweight
“once and for all” approaches are a poor fit in data science contexts,
where small teams of analysts convert data into actionable insights
in more or less real time, drawing together multiple sources to an-
swer targeted questions using specialized methods. Recent systems
aim to reduce the effort required during the data curation step (e.g.,
format-busting and data profiling with Data Wrangler [1], enterprise
integration with Tamr [18]), but scripts-and-files approaches are still

dominant among data scientists: there is no time to amortize the
up-front cost of warehouse design or global-as-view/local-as-view
data integration exercises, and moreover, the data is rarely being ex-
tracted from a carefully engineered schema on which these methods
tend to rely.

But the cost of this over-reliance on scripts and files is high: Our
collaborators in the sciences report spending up to 90% of their time
manipulating data [10], consistent with other anecdotal reports of
the balance of time between data curation versus data analysis.

To reduce the burden of data janitorial work and improve reuse,
we posit that databases can be naturally extended to support the en-
tire data lifecycle, including preliminary data cleaning and curation
from untrusted sources typically handled outside the database. That
is, we argue that databases should be designed to encourage inges-
tion of dirty, weakly structured data (i.e., rows-and-columns but no
engineered schema), and that curation should be performed directly
in the database by writing SQL. In this paper, we provide evidence
of how this approach of letting databases do the curation via SQL
queries, actually worked in practice by finding and characterizing

‘cleaning idioms’ in a multi-year query workload.
We see multiple benefits to letting databases do this heavy lifting:

i) the data always resides at one place during the entire analysis
lifecycle (Figure 1), ii) the cleanup steps become more scalable, re-
liable, and reusable, and iii) the raw data is always directly available
for reprocessing and recleaning in new contexts.

Ing
es
t

Cle
an
ing

Sy
nth

es
is

Ma
na
ge
me
nt

An
aly
tic
s

Vis
ua
liza

tio
n

Sh
ari
ng

SQLShare

RDBMS

Figure 1: We find relational databases to be relevant at all
stages in the scientific data lifecyle. SQLShare, a cloud-hosted
database, empowers novice users by providing a system which
handles use-cases across the data lifecyle.

The primary disadvantage of this approach is the SQL authorship:
many common curation tasks, while expressible in SQL, are suf-
ficiently awkward as to prevent uptake. Our hypothesis was that
direct support for a set of common SQL data curation idioms can
make SQL-based curation competitive with script-based curation.

To understand data curation tasks in practice, we analyzed the
workload of the SQLShare system [11, 12, 10], a Database-as-a-
Service system targeting scientists and engineers. SQLShare en-

1



courages users to upload uncurated datasets over the web “as is,”
write queries across any datasets in the system, and share the results
as views. The goal is to reduce the overhead in using relational
databases in ad hoc analytics scenarios by reducing or eliminating
upfront costs associated with installation, configuration, schema de-
sign, tuning, and ingestion. SQLShare supports automated schema
inference and tolerates dirty data; these features allowed users to
switch from managing and sharing brittle, dynamic sequences of
scripts to a single system where all the operations can be performed
safely, reliably, and scalably.

Over the years, we collected the query logs on SQLShare and an-
alyzed interesting use cases. One common use case, as we expected,
was that of data cleanup and curation tasks. We show in this work
how we can use these query logs to identify common cleanup tasks
and provide them as suggestions for newer dataset uploads.

Furthermore, we envision how these cleanup idioms can be used
to inform design of newer databases as follows:

1. Identify the clean up task from the query logs (hint: these are
often the very first tasks performed on a dataset)

2. Generate templatized idioms for these cleanup tasks.

3. Upon newer dataset uploads, identify which idioms can be
applied to the datasets.

4. Synthesize a clean up query from the selected idiom.

In this paper, we identify common curation patterns that appeared
prominently in the SQLShare workload, we describe how they are
used in practice, and how these patterns informed specific features
in SQLShare to assist in data ingest and query authoring. Finally,
we describe some ongoing work in semi-automatic data curation
based on these idioms.

2. SQLSHARE WORKLOAD
SQLShare is a Database-as-a-Service system targeting scientists

and engineers. Users upload datasets through a web interface as-is
with no explicit schema, write queries across any datasets in the
system, and share the results as views. The goal is to reduce the
overhead in using relational databases in ad hoc analytics scenar-
ios: installation, configuration, schema design, tuning, and data
ingestion. Queries are submitted through a web interface, allowing
collaborative query authoring and avoiding any software installation.
The SQLShare interface facilitates and encourages the liberal use of
views. Users frequently create deeply nested hierarchies of views
to break down complex problems, clean and share intermediate
datasets, and record provenance for complex results. SQLShare has
been deployed in a number of scientific contexts and has proven to
be useful even among SQL first-timers. Howe et al. describe the
SQLShare architecture and motivation in detail in [9, 12, 11]. [10,
12] describes an in depth use cases of SQLShare view relational view
sharing. SQLShare aims at reducing data management overhead
in all stages of the data lifecycle shown in Figure 1. While there
is no built-in support for visualization, Key et al. showed how the
SQLShare can be extended to afford automatic visualization [14].

Analysis of this workload [3] showed that users were frequently
expressing data curation and cleaning tasks directly in SQL. Since
SQLShare encouraged users to upload datasets as is, a significant
number of queries submitted to the system were intended to reshape
the data, rename columns, remove errant values, and implement
other data curation tasks. In this paper, we identify the common data
cleaning idioms present in the SQLShare workload and consider
how they can be generalized and applied automatically to incoming
data.

Listing 1 Example queries for each idiom.
Vertical recompositioning:
"SELECT * from [gbc3].[sqlshare-exp.txt]
UNION ALL
SELECT * from [gbc3].[gen_sqlshare.txt]"
Horizontal recompositioning:
"SELECT * FROM [che].[m1]
FULL OUTER JOIN [che].[m3]
ON
[che].[m1].m1_loci_id=[che].[m3].m3_loci_id"
Column rename:
"SELECT column2 as sp, column3 as SPID,
column4 as Prot FROM
[userX].[uniprotolyblastx2.tab]"
NULL injection:
"SELECT CASE WHEN [400 avg NSAF] = 0
THEN NULL
ELSE [2800 avg NSAF]/[400 avg NSAF] END
FROM
[emma].[NSAFwithAve]"

Table 1: Frequency of observed idioms (total datasets: 4535)

Idiom Datasets
Vertical recompositioning 100

Horizontal recompositioning 210
Column rename 720
NULL injection 420

3. CURATING IDIOMS
The ubiquity of weakly structured data in the science use cases

required SQLShare to tolerate (and even embrace) upload of weakly
structured data. SQLShare encourages users to write SQL queries
to repair and reorganize data rather than relying on offline scripts.
By mining the workload, we extract generalizable patterns used to
perform these repairs and use them to design services to partially
automate cleaning tasks.

The SQLShare query corpus presents rich evidence to support
this hypothesis. By searching the corpus of 4535 derived datasets
(views), we found specific SQL idioms that correspond to schemati-
zation tasks: cleaning, typecasting, and integration.

We focus on the following curation patterns extracted from the
SQLShare logs. Along with each idiom, we present an example
query from the logs in Listing 1, and a method for using the id-
iom to support curation-on-ingest. Table 1 shows the frequency of
occurrences of these idioms.

• Vertical recompositioning: Datasets in SQLShare are often
representative of scientific processes where one logical dataset
arrives in the form of several distinct files arriving at different
times. For example, one lab collected data daily from a sensor
depoyed in a local estuary. The need to pre-establish a schema
and load the data file-by-file makes databases unattractive in
these contexts, but SQLShare helped eliminate steps during
data ingest. However, users still needed to craft a UNION
ALL query to assemble the results, sometimes reordering
columns or casting types to align the derived schemas.

Curation on ingest: By learning these schema alignment
heuristics automatically from the data, and applying schema

2



matching methods, these UNION ALL queries can be auto-
matically recommended and applied by the system upon data
ingest. One such approach was describe in our previous work
on automatically deriving example queries from base data [8].

• Horizontal recompositioning: This idiom pertains to horizon-
tally partitioned datasets. As with vertical recompositioning,
scientific processes generating the data sometimes produce
horizontally split data. Sometimes different labs working on
same samples generate different attributes about them. These
cases appear in the logs as multiway 1:1 joins.

Curation on ingest: Suggesting queries for horizontal recom-
positioning can be non-trivial. However, we can again use the
approach shown in [8] to find potential for joins automatically.
Automatic join finding using measures like jaccard similarity
has been done in the past, combining this approach with a
rich hand written query log to suggest data curation idioms is
something that can finally make such approaches viable.

• Column renaming: It is common for datasets in SQLShare
to have no column names in the source files. For this user
scenario, SQLShare assigns default column names. Users
are encouraged to write SQL to assign semantic names. We
find evidence of 1996 uploaded tables, which is about 50% of
the total tables, that had at least one default-assigned column
name. The number of datasets for which all columns were
assigned the default value is 1691. Almost 16% of datasets
involve some kind of column renaming step, suggesting that
users have adopted SQL as a tool for adding semantics to
their data. We find this as sufficient evidence to back our
hypothesis that the SQLShare workload contains a rich set of
cleanup and curation queries.

Curation on ingest: While identifying potential columns to
rename is easy (columns with the default names are obvious
candidates to begin, with a few false positives), suggesting
valid renames is a very ambiguous problem. However, since
we do have the advantage of having the previous tables and
queries written on them. One approach could be to match the
range of values of the column to rename to the range of values
to previously existing and renamed columns. For example, for
an attribute whose range is 0 to 360 and renamed to ‘Angle’,
it might make sense to suggest for columns with values in
the same domain. Another possible way could to be calculate
the earth mover distance [17] between the histograms of col-
umn values and suggest rename to column with which this
distance is least. There are other principled approaches as in
WebTables [7] which uses the attribute correlation statistics
to suggest schema auto-complete.

• NULL injection and Type Coercion: Sentinel values are rou-
tinely used to mark missing or inapplicable data; we see string
values of “N/A” for example embedded in an otherwise nu-
meric column. The SQL authors can use assemblies of CASE
WHEN expressions, filtering, and type casting to replace
these values with NULL or otherwise repair them. These con-
structs are conceptually trivial (“Across all columns, replace
the value X with NULL”) but hand-writing the corresponding
query is tedious and error-prone. After removing bad tuples
and replacing missing values with NULL, we find that about
200 of derived datasets used SQL CAST to introduce new
types on existing columns.

Curation on ingest: Our current implementation automati-
cally infers data types based on a prefix of rows, and creates

two table. The first table corresponds to the predicted type,
and the second table holds non-conforming rows and has ev-
ery column typed as a string. Finally, a view is created to
union the 2 tables and is presented to the user, along with
the information about the 2 base tables. This process helps
separate the numeric data from the sentinel values, but does
not automatically apply the CASE expressions.

3.1 Towards Idiom-Based Data Curation
So far we have shown the evidence of curation via SQL queries

in the SQLShare workload. We discussed how these queries can be
characterized into common curation idioms and finally we detailed
the potential algorithms for curation on ingest.

Tying it all together, the idiom recommendation algorithm would
work as follows:

• Identify the common curation idioms, the very first queries
on a dataset are often representative of these idioms.

• Generate a query template for each idiom as shown in Qunits
[16] and also in SQLShare analysis [12].

• At the time of data ingest, we use the curation on ingest
techniques in section §3 to identify possible idioms.

• Synthesize the curation queries from the templates and pro-
vide them as suggestion to the users. The query synthesis
problem has already been solved with multiple examples al-
ready available in the literature [6, 4, 5].

This approach of suggesting queries at ingest can save a lot of
user time because writing these queries by hand can be repetitive
and time consuming. The false positives don’t hurt a lot because the
user is always in loop and chooses which curation idiom, if any, she
wants to apply to her dataset.

In our current implementation, we have a working analysis pipeline
[12] and idiom detection. The next steps include integrating this
pipeline with the SQLShare system and implementing a query syn-
thesis algorithm. We are actively working on a demo system and
hope to present in the immediate future.

4. RELATED WORK
Parsing of complex formats (messy data) to produce weakly struc-

tured data for further processing is a problem that has been ap-
proached previously, OpenRefine [2] and Wrangler [1] being pop-
ular examples of this approach. These tools do not offer support
working with multiple datasets and have been shown to have domi-
nant costs [13].

SnipSuggest [15] is an example of system which provides auto
completion of queries and has been shown to enable non-experts to
write complex SQL. Our work has similar aims, but our approach
is to suggest complete queries, automatically synthesized based on
previous queries.

WebTables [7] is another work in similar domain, but the focus is
to provide automatic schema completion for myriad of documents
of the web. We approach suggests a possible use of their schema
completion algorithm, but goes beyond just schema completion and
provides a richer set of curation idioms.

Akbarnejad et al. [5] used a similar approach, i.e. using history
and preferences to recommend queries. We hope to extend their
work and use it an a setting where user is automatically suggested
queries on ingest, i.e., the required interaction is minimal, while the
queries are still relevant. However, we have one critical advantage
in our proposed system, a workload with real handwritten queries.

3



One of our previous works [8] presents the notion of suggesting
automatic starter queries, or queries by example, aimed at providing
novice users with example and ease the ramping up process. This
paper has a similar goal, but our approach has one major difference
in that we learn the idioms we are suggesting from the query logs,
these idioms are proven to be useful to users, since they have already
used them and have the potential to suggest very complex queries
(something which the previous approach lacked).

5. CONCLUSION AND FUTURE WORK
We presented a work in progress which uses handwritten queries

from a five-year corpus of Database-as-a-Service platform called
SQLShare to identify data clean up queries written in SQL. The
design choices in SQLShare enabled the users to use databases all
stages in the scientific data lifecycle. We present evidence of clean
up and curation being done via SQL queries and discuss methods in
which these query idioms can be used to suggest curation queries
to users at the time of data ingest. We talked about the analysis
of SQLShare workload and how we mined the queries related to
cleaning and curation. We also identified some commonly used
idioms which in our opinion should be better supported in databases.
Currently we have set up workload analysis pipeline as shown in
[12] and have a naive way to find out possible curation queries.
Since the clean up queries are usually the very first queries on a
dataset, our current methods looks for common idioms amongst
these. Our immediate next plan is to extend this work to:

• Incorporate an idiom recommendation process into SQLShare

• Identify other query idioms for scientific use cases. This can
be done by clustering embeddings for queries in a higher
dimensional space and associating idioms with these clusters.

Our final vision is to have a system which takes in a dataset (plus
JBOTs) and suggests curation & scientific analysis queries that can
run on it.

6. REFERENCES
[1] Data wrangler.

http://vis.stanford.edu/wrangler/.
[2] OpenRefine (formerly google refine).

http://openrefine.org/.
[3] Sqlshare workload data release 1. https://uwescience.

github.io/sqlshare/data_release.html.
[4] S. Abdul Khalek and S. Khurshid. Automated sql query

generation for systematic testing of database engines. In
Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE ’10, pages 329–332,
New York, NY, USA, 2010. ACM.

[5] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,
S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. Sql querie
recommendations. Proceedings of the VLDB Endowment,
3(1-2):1597–1600, 2010.

[6] N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries
with cardinality constraints for dbms testing. Knowledge and
Data Engineering, IEEE Transactions on, 18(12):1721–1725,
2006.

[7] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Webtables: exploring the power of tables on the web.
Proceedings of the VLDB Endowment, 1(1):538–549, 2008.

[8] B. Howe, G. Cole, N. Khoussainova, and L. Battle. Automatic
example queries for ad hoc databases. In Proceedings of the
2011 ACM SIGMOD International Conference on
Management of data, pages 1319–1322. ACM, 2011.

[9] B. Howe, G. Cole, E. Souroush, P. Koutris, A. Key,
N. Khoussainova, and L. Battle. Database-as-a-service for
long-tail science. In Scientific and Statistical Database
Management, pages 480–489. Springer, 2011.

[10] B. Howe, F. Ribalet, D. Halperin, S. Chitnis, and E. V.
Armbrust. Sqlshare: Scientific workflow via relational view
sharing. Computing in Science & Engineering, Special Issue
on Science Data Management, 15(2), 2013.

[11] S. Jain, D. Moritz, and B. Howe. High variety cloud databases.
In Proceedings of the 2016 IEEE Cloud Data Management
Workshop., 2016.

[12] S. Jain, D. Moritz, B. Howe, D. Halperin, and E. Lazowska.
Sqlshare: Results from a multi-year sql-as-a-service
experiment. In Proceedings of the 2016 ACM SIGMOD
international conference on Management of data, 2016.

[13] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 3363–3372. ACM, 2011.

[14] A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck:
self-organizing dashboards for visual analytics. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 681–684. ACM,
2012.

[15] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: Context-aware autocompletion for sql.
Proceedings of the VLDB Endowment, 4(1):22–33, 2010.

[16] A. Nandi and H. Jagadish. Qunits: queried units in database
search. arXiv preprint arXiv:0909.1765, 2009.

[17] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In
Computer Vision, 1998. Sixth International Conference on,
pages 59–66. IEEE, 1998.

[18] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales,
M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu. Data
curation at scale: The data tamer system. In CIDR, 2013.

4

http://vis.stanford.edu/wrangler/
http://openrefine.org/
https://uwescience.github.io/sqlshare/data_release.html
https://uwescience.github.io/sqlshare/data_release.html

